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Problem

Key Term — Stress Relaxation: the time-dependent decrease 1n stress of
a viscoelastic material held under constant strain
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* Deployable structures spend up to 1 or 2 years in
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stowage before deployment
* Can result in loss of structural integrity if significant

relaxation occurs
* Need to mitigate stress relaxation within Jmm 8
ultralightweight carbon fiber / polymer composites W
. : C :
Current investigations rely on experimental results Fig. 1. About 50% loss in buckling
strength due to stress relaxation [1].

of material testing
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Objectives

Driving Question: How can the stress relaxation modulus of polymer composites
be determined without physically testing candidate materials?

* Assess candidate algorithms for use in determining stress relaxation
modulus

* Create a program that will learn from existing stress relaxation
database to predict stress relaxation behavior in polymer composites

* Validate model and improve mean squared error (MSE)
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Approach

* Developed model for validation with experimental data:
* Gaussian Process Regression (GPR) Algorithm

* Implicit determination of influencing factors using covariance matrix

* Where X is an array of m elements and £ denotes the expected value of X
* Experimental data obtained consisted of 11 influencing factors (parameters)

* Time, Temperature, Relaxation Modulus, Stress, Strain Recovery, Decay Time, Strain,
Displacement, Length, Static Force, Stiffness

* Analysis Comparison utilized Time-Temperature Superposition (TTS)
* Time-dependent mechanical properties (relaxation) can be mathematically
approximated in time using high temperature experiments

* 1.e. the relaxation of a polymer over 1,000,000 minutes at room temperature can be
approximated by the relaxation of the same polymer over 60 minutes at 100
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Results

* GPR Mean Squared Error (MSE): 9.8976

* Range of values 1s 104, a5 210
0 *  Experimental Data
© Scaled MSE: 0.045% ' — GPR Model Predictions

* Dataset Length: 703
* Number of Parameters: 11

Relaxation Modulus Predictions utilizing GPR Model

.10* Relaxation Modulus Predictions utilizing GPR Model
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Fig. 3. Overlay of Experimental Data on GPR Model Predictions of Stress
Relaxation Modulus for a Carbon Fiber-Reinforced Polymer Composite
over domain of interest

Data

Fig. 2. Overlay of Experimental Data on GPR Model Predictions

of Stress Relaxation Modulus for a Carbon Fiber-Reinforced
Polymer Composite over entire experimental domain
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Fig. 4 & 5. Comparison of experimental (left) and modeled (right) stress relaxation behavior for carbon fiber
polymer composite after time-temperature superposition post-processing analysis

Experimental Results:16.87% reduction in relaxation modulus after 2 years of stowage
GPR Prediction Results:16.86% reduction in relaxation modulus after 2 years of stowage
0.059% difference between experimental and modeled results

Suggests that majority of regression loss (mean squared error) is due to viscoelastic modeled region of composite

Validated model is highly accurate
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Next Steps

Predictions

* Developing a focused algorithm utilizing : }
transfer learning Uniraied s
* Limited dataset of stress relaxation :

* Transfer learning can accurately predict
complex relationships using limited data

Dataset

Dataset

* Highly Versatile proj eCt [ Generic Large } [Specialized Small}

* Constructed models can learn and predict
material properties beyond stress relaxation

. . Fig. 6. Transfer Learning schematic for
* Thermoelectric properties & e & Je

small dataset predictions.
* Mechanical properties

* Optical properties
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